Convex lattice polygons of fixed area with perimeter-dependent weights.
نویسندگان
چکیده
We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal lattices. We attach a weight tm to a convex polygon of perimeter m and show that the sum of weights of all polygons with a fixed area s varies as s(-theta(conv))eK(t)square root(s) for large s and t less than a critical threshold tc, where K(t) is a t-dependent constant, and theta(conv) is a critical exponent which does not change with t. Using heuristic arguments, we find that theta(conv) is 1/4 for the square lattice, but -1/4 for the hexagonal lattice. The reason for this unexpected nonuniversality of theta(conv) is traced to existence of sharp corners in the asymptotic shape of these polygons.
منابع مشابه
Asymptotic behaviour of convex and column-convex lattice polygons with fixed area and varying perimeter
We study the inflated phase of two dimensional lattice polygons, both convex and column-convex, with fixed area A and variable perimeter, when a weight μ exp[−Jb] is associated to a polygon with perimeter t and b bends. The mean perimeter is calculated as a function of the fugacity μ and the bending rigidity J . In the limit μ → 0, the mean perimeter has the asymptotic behaviour 〈t〉/4 √ A ≃ 1−K...
متن کاملAsymptotic Behavior of Inflated Lattice Polygons
We study the inflated phase of two dimensional lattice polygons with fixed perimeter N and variable area, associating a weight exp[pA− Jb] to a polygon with area A and b bends. For convex and column-convex polygons, we show that 〈A〉/Amax = 1−K(J)/p̃ 2 + O(ρ), where p̃ = pN ≫ 1, and ρ < 1. The constant K(J) is found to be the same for both types of polygons. We argue that self-avoiding polygons sh...
متن کاملOn convex lattice polygons
Let II be a convex lattice polygon with b boundary points and c (5 1) interior points. We show that for any given a , the number b satisfies b 5 2e + 7 , and identify the polygons for which equality holds. A lattice polygon II is a simple polygon whose vertices are points of the integral lattice. We let A = 4(11) denote the area of II , b{U) the number of lattice points on the boundary of II , ...
متن کاملOsculating and neighbour-avoiding polygons on the square lattice*
We study two simple modifications of self-avoiding polygons (SAPs). Osculating polygons (OP) are a super-set in which we allow the perimeter of the polygon to touch at a vertex. Neighbour-avoiding polygons (NAP) are only allowed to have nearest-neighbour vertices provided these are joined by the associated edge and thus form a sub-set of SAPs. We use the finite lattice method to count the numbe...
متن کاملPunctured polygons and polyominoes on the square lattice
We use the finite lattice method to count the number of punctured staircase and selfavoiding polygons with up to three holes on the square lattice. New or radically extended series have been derived for both the perimeter and area generating functions. We show that the critical point is unchanged by a finite number of punctures, and that the critical exponent increases by a fixed amount for eac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 71 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2005